

Spirion
Extensions

Algorithmic Validation of
Mobile Device Identifiers
with Spirion’s SearchAPI

Page 1 of 7

Algorithmic Validation of Mobile Device

Identifiers with Spirion’s SearchAPI

Introduction

Mobile devices connect to their intended network (LTE, 5G, etc.) using a cellular modem/radio, and

they are authorized to send or receive mobile data via an associated Subscriber Identity Module

(SIM). These two components – cellular radio and SIM – have unique identifiers: IMEI and ICCID

numbers, respectively. Much like how MAC addresses are used in traditional IT infrastructure, these

values are utilized by network operators and enterprise organizations to manage security and

services for customers, employees, and unattended equipment communicating over wireless WAN

connections.

Both IMEIs and ICCIDs are linked to individual identities, meaning they are considered to be personal

data as specified by regulations such as the California Consumer Privacy Act (CCPA) and the General

Data Protection Regulation (GDPR). They also both conform to a numeric syntax that includes a

checksum formula, the Luhn algorithm. Values constructed with procedural logic are best searched

for by incorporating their underlying rules in the discovery process – this enables accuracy beyond

the capabilities of pattern matching as articulated by keywords, dictionary lists, or regular

expressions alone.

Spirion’s Search API creates customized algorithmic search parameters for user-defined data types.

Using this feature, custom SearchAPI DLL validates potential matches initially captured by pattern-

based definitions. This document covers the steps necessary to incorporate Luhn validation when

configuring IMEI and ICCID searches with Spirion.

Requirements

Before working on the steps outlined in this document, please confirm the following:

• The latest SDM console is accessible.

• An integrated development environment (IDE) capable of editing and compiling Microsoft

Visual C++ files is available.

o Microsoft Visual Studio Enterprise 2019 is used in the procedure explained below.

• The Search API sample project has been downloaded from the Spirion Knowledge Base.

• IMEI and/or ICCID sample data is obtainable.

Important Notes

Spirion Software Versions

SDM Console version 11.8.2 and Spirion Agent version 11.8.7 were used to perform the steps

described in this document.

https://www.spirion.com/blog/what-do-consumer-data-laws-like-the-ccpa-and-gdpr-mean-for-my-business/
https://www.spirion.com/blog/what-do-consumer-data-laws-like-the-ccpa-and-gdpr-mean-for-my-business/
https://www.spirion.com/blog/what-do-consumer-data-laws-like-the-ccpa-and-gdpr-mean-for-my-business/
https://support.spirion.com/hc/en-us/articles/4411640475277-Search-API

Page 2 of 7

Test Data

Sample IMEIs and ICCIDs can be obtained from a cellular phone. The steps below were performed

on devices running Android v12 and iOS v16.

Android:

1. Navigate to Settings > About Phone > Status information.

2. Click on SIM card status to view the ICCID number.

3. Navigate back to Status information.

4. Select IMEI information to view the IMEI number.

iOS:

1. Navigate to Settings > General > About.

2. Scroll down to Physical SIM.

3. Reference the values in the “IMEI” and “ICCID” fields.

Luhn Algorithm

Also known as the “modulus 10” or “mod 10” algorithm, the Luhn algorithm establishes a check digit

through the following logic:

1. Starting with the rightmost digit, double the value of every second digit.

2. A new value for the doubled digits is determined conditionally:

a. If the value of the doubled digit is greater than 9 (i.e. two digits), add them together.

i. For example, 6x2=12 which would lead to a new value of 3 since 1+2=3.

b. Otherwise, the doubled value is the new value.

i. For example, 4x2=8 which would lead to a new value of 8.

3. Generate a sum from the new values (calculated from the doubled digits) as well as the non-

doubled digits.

4. Determine the check digit by calculating (10-(sum%10))%10.

a. NOTE: The “%” symbol above is used to indicate the mod10 operation.

Example

The number “8675309” would calculate its check digit using the logic per the table below.

Original 8 6 7 5 3 0 9

Multipliers 2 1 2 1 2 1 2

= = = = = = =

16 6 14 5 6 0 18

Sum Digits 7 6 5 5 6 0 9

The sum of the transformed digits is 38.

The check digit is equal to (10-(38%10))%10=2.

The full value for “8675309” would be “86753092” when including a Luhn-validated check digit.

NOTE: If working with a value that already includes a check digit, it should not be included in the

procedure above – omit it from the computation (but use it to validate the result).

https://en.wikipedia.org/wiki/Luhn_algorithm

Page 3 of 7

Process

Custom data types created using Spirion’s Search API require the creation of a DLL file that contains

the user-defined logic articulated in C++ code. Once compiled, the DLL file is added to the SDM

Console and hosted locally on any Spirion Agent engaged in a search for the custom data type.

Creating a DLL

Spirion has created a sample project that should be used as the template for any custom data types

created using the Search API. It is available for download within the Search API Knowledge Base

article. Unpack it and open SearchDLL.vcxproj in an IDE, such as Visual Studio 2019 documented in

this walkthrough.

NOTE: Two versions, one for IMEI and one for ICCID, are attached to this document’s Spirion
Marketplace article for additional reference.

1. In the project tree, navigate to SearchDLL.cpp.

2. From the Solution Configurations pulldown menu, toggle from “Debug” to “Release.”

3. On line 19, specify a CUSTOM_SEARCH_NAME.

4. On line 20, specify a RESULT_TYPE.

a. The default value of “12001” may be used once, but all subsequent DLLs must
feature a unique value.

5. On line 63, specify a regular expression per the guidance in the comments.

a. NOTE: In this document, the regex has been simplified to emphasize the algorithmic

validation outlined in subsequent steps. Additional consideration for refining the

pattern-matching portion of this example may be warranted if looking to isolate

specific IMEI Type Allocation Codes (TACs) or ICCID subparts.

b. For IMEIs, enter the following baseline regex: (^|\\s)\\d{15}($|\\s)

c. For ICCIDs, use: (^|\\s)89(\\d{17}|\\d{18})($|\\s)

6. Comment out line 104 – this function offers additional keyword validation that is not

relevant to the process covered in this document.

https://support.spirion.com/hc/en-us/articles/4411640475277-Search-API
https://support.spirion.com/hc/en-us/articles/4411640475277-Search-API
https://en.wikipedia.org/wiki/Type_Allocation_Code
https://en.wikipedia.org/wiki/SIM_card#ICCID

Page 4 of 7

7. Replace lines 158 through 166 with the following code:

int answerSize = answer.size();

int lastDigit = answerSize - 1;

int payloadLength = answerSize - 2;

int checkDigit = answer[lastDigit] - _T('0');

int sumTotal = 0;

for (int i = payloadLength; i >= 0; i--) {

int currentDigit = answer[i] - _T('0');

if (i % 2 != 0) {

int doubleDigit = currentDigit * 2;

if (doubleDigit > 9) {

sumTotal += doubleDigit - 9;

}

else {

sumTotal += doubleDigit;

}

}

else {

sumTotal += currentDigit;

}

}

int luhnVal = (10 - (sumTotal % 10)) % 10;

//Test if the Luhn value equals check digit

if (luhnVal != checkDigit) { return(false); }

8. Repeat the previous step on lines 227 through 218.

a. NOTE: The line range specified above references the file in its original state (i.e. prior

to adding the new code specified in the previous step).

9. Save changes to “SearchDLL.cpp.”
10. Navigate to Build in the main menu and select Build SearchDLL.

11. Note the export path indicated in the IDE’s compilation logs to find where the newly built

DLL file resides.

12. Rename this file to “SearchIMEI.dll”.
a. For ongoing maintenance of this custom data type, consider renaming the

“SearchDLL” project to “SearchIMEI” for clarity.

Page 5 of 7

13. Repeat this process using a separate project to build a DLL for the ICCID custom data type,

replacing “IMEI” with “ICCID” for any naming conventions and referencing the following

code instead of what’s listed previously for step #7:

int answerSize = answer.size();

int lastDigit = answerSize - 1;

int payloadLength = answerSize - 2;

int checkDigit = answer[lastDigit] - _T('0');

int sumTotal = 0;

for (int i = payloadLength; i >= 0; i--) {

int currentDigit = answer[i] - _T('0');

if ((i % 2 != 0 && answerSize % 2 != 0) || (i % 2 == 0 && answerSize % 2 == 0)) {

int doubleDigit = currentDigit * 2;

if (doubleDigit > 9) {

sumTotal += doubleDigit - 9;

}

else {

sumTotal += doubleDigit;

}

}

else {

sumTotal += currentDigit;

}

}

int luhnVal = (10 - (sumTotal % 10)) % 10;

//Test if the Luhn value equals check digit

if (luhnVal != checkDigit) { return(false); }

Configuring the Spirion Console

Adding the DLL(s)

Once built, the DLL now needs to be added to the SDM Console. This process must be repeated for

each DLL generated – presumably once for IMEI and once for ICCID.

1. Log into SDM.

2. Navigate to the Admin tab and select Sensitive Data Types from the menu on the left.

3. Click Add from the ribbon menu.

4. From the Data Type pulldown, select “Search API.”
5. Click the … button next to File.

Page 6 of 7

6. Browse to the DLL(s) generated for this exercise in the previous section and click Open.

7. Select Ok to finalize the entry.

8. The custom data type associated with the DLL file will now appear as a “Search API” entry
with its associated “Type Number” and “Name” as specified in the previous section.

Setting the SDM Scan Policy

The Search API should be enabled via “Scheduled Task” policy (as opposed to a “System” policy).
1. Navigate to the Policies tab.

2. Modify or create a Scheduled Task policy that will be sent to the Spirion Agent(s) for

discovery scans using the Search API custom data type(s).

3. Under Settings expand Initialization > Plugins and set Enable to “Enable Plugins.”
4. Initialization > Plugins > Path can be left blank (its default setting) unless the Spirion Agent

is installed to a nonstandard location.

5. Under Sensitive Data Types within the same policy, select IMEI and ICCID.

6. The Agent(s) assigned to this policy must be configured per the guidance in the following

section before being used in a search.

Staging the Spirion Agent

The DLL file(s) need to be hosted locally within the Spirion Agent’s install directory for Search API

data types to be returned in scans initiated by either the Console or Agent UI.

1. Using Windows File Explorer, navigate to the installation path of the Spirion Agent.

a. This is C:\Program Files (x86)\Spirion by default.

2. Create a folder called “Plugins” and place the DLL file(s) in that new directory.

Page 7 of 7

Outcomes

With the custom DLLs added to both the SDM Console and the Spirion Agent, searches will include

matches for both IMEIs and ICCIDs that are validated programmatically with a checksum.

SDM Console Searches

Search API entries in the SDM Console are included in scan results so long as “Initialization > Plugins

> Enable” is set to “Enable Plugins” in an actively engaged policy – selection via the policy’s
“Sensitive Data Types” menu is used for tracking purposes only.

Restricting Results

Individual Search API data types can be selectively included in a discovery scan by editing the

Scheduled Task policy to include the following adjustments:

1. Navigate to the Settings of a Scheduled Task configured to enable the Search API.

2. Under Console, edit matchTypesCustom to include the “Type Number” of the custom data
type that should be included.

3. All other Search API entries will be omitted from scan results.

a. For example, assuming the SearchDLL for IMEIs was created using the instructions in

this document, entering “12001” under Console > matchTypesCustom will configure

a scan to only include IMEIs; ICCIDs will not be returned in scan results even if it is

present on the Agent and selected in the Scheduled Task policy.

Spirion Agent Searches

Custom data types defined by the Search API are automatically included in scans for Agent-initiated

searches so long as the DLLs are located in the Plugins folder within the Spirion installation directory,

which is “Program Files (x86)” by default.

Restricting Results

The only way to prevent their inclusion is to remove the DLL file prior to starting an Agent-initiated

search.

	09_Spirion_Ex_Algorithmic-Validation-Mobile-Device-Identifiers-cover
	09_Spirion_Ex_Algorithmic-Validation-Mobile-Device-Identifiers
	Pages from Cool Solution - IMEI and ICCID with SearchAPI.pdf
	CS-Algorithmic-Validation-of-Mobile-Device-Identifiers-with-Spirions-SearchAPI-20221116

