

Spirion
Extensions

Algorithmic Validation of
UIDAI/Aadhaar Numbers
with Spirion’s Search API

1

 ©2023 SPIRION, LLC. ALL RIGHTS RESERVED

Table of Contents

Algorithmic Validation of UIDAI/Aadhaar Numbers with Spirion’s Search API 2

Introduction .. 2

Requirements .. 2

Important Notes .. 2

Spirion Software Versions .. 2

Verhoeff Algorithm ... 2

Process .. 3

Creating a DLL .. 4

Configuring the Spirion Console .. 7

Adding the DLL ... 7

Setting the SDM Scan Policy .. 8

Staging the Spirion Agent ... 9

Outcomes ... 10

SDM Console Searches ... 10

Restricting Results .. 10

2

 ©2023 SPIRION, LLC. ALL RIGHTS RESERVED

Algorithmic Validation of UIDAI/Aadhaar

Numbers with Spirion’s Search API

Introduction

Spirion’s Search API creates customized algorithmic search parameters for user-

defined data types. Using this feature, computational logic validates potential
matches initially captured by pattern-based definitions. This extension covers the
steps necessary to incorporate Verhoeff validation when configuring UIDAI/Aadhaar
number searches with Spirion.

Requirements

Before working on the steps outlined in this document, please confirm the following:

• The latest SDM console is accessible.

• An integrated development environment (IDE) capable of editing and
compiling Microsoft Visual C++ files is available.

o Microsoft Visual Studio Enterprise 2019 is used in the procedure

explained below.
• The Search API sample project has been downloaded from the Spirion

Knowledge Base.

• UIDAI sample data is obtainable.

Important Notes

Spirion Software Versions

SDM Console version 11.8.2 and Spirion Agent version 11.8.7 were used to perform the
steps described in this document.

Verhoeff Algorithm

The Verhoeff algorithm validates a check digit by referencing the following tables
and procedure:

d(j,k)
k

0 1 2 3 4 5 6 7 8 9

j
0 0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 0 6 7 8 9 5

j inv(j)

0 0

1 4

p(pos,num)
num

0 1 2 3 4 5 6 7 8 9

p
o

s(
m

o

d
 8

) 0 0 1 2 3 4 5 6 7 8 9

1 1 5 7 6 2 8 3 0 9 4

https://support.spirion.com/hc/en-us/articles/4411640475277-Search-API
https://support.spirion.com/hc/en-us/articles/4411640475277-Search-API
https://en.wikipedia.org/wiki/Verhoeff_algorithm

3

 ©2023 SPIRION, LLC. ALL RIGHTS RESERVED

2 2 3 4 0 1 7 8 9 5 6

3 3 4 0 1 2 8 9 5 6 7

4 4 0 1 2 3 9 5 6 7 8

5 5 9 8 7 6 0 4 3 2 1

6 6 5 9 8 7 1 0 4 3 2

7 7 6 5 9 8 2 1 0 4 3

8 8 7 6 5 9 3 2 1 0 4

9 9 8 7 6 5 4 3 2 1 0

2 3

3 2

4 1

5 5

6 6

7 7

8 8

9 9

2 5 8 0 3 7 9 6 1 4 2

3 8 9 1 6 0 4 3 5 2 7

4 9 4 5 3 1 2 6 8 7 0

5 4 2 8 6 5 7 3 9 0 1

6 2 7 9 3 8 0 6 4 1 5

7 7 0 4 6 9 1 3 2 5 8

1. Starting with the rightmost digit, convert the number to an array.
a. For example, 2363 becomes [3, 6, 3, 2].

2. Initialize the checksum, c, to 0.

3. Iterate over the array, replacing c with d(c, p(i mod 8, ni)).

4. After the last step, the check is correct if c is 0.

5. To calculate the correct value itself, set the first number in the array to “0” (to
remove the reported check digit from consideration) before completing step
#3, looking up inv(c) instead for step #4.

a. If this calculated value is equal to the check digit, it passes the
Verhoeff check.

Example

The example above – 2363 – is validated in the following steps:

i ni p(i,ni) c

0 3 3 3

1 6 3 1

2 3 3 4

3 2 1 0

Alternatively, we can confirm that “3” is a valid check digit by following step 5 from
the process in the previous section.

i ni p(i,ni) c

0 0 0 0

1 6 3 3

2 3 3 1

3 2 1 2

Looking up inv(2) in the table on the previous page, “3” is confirmed as the correct
check digit.

Process

4

 ©2023 SPIRION, LLC. ALL RIGHTS RESERVED

Custom data types created using Spirion’s Search API require the creation of a DLL

file that contains the user-defined logic articulated in C++ code. Once compiled, the

DLL file is added to the SDM Console and hosted locally on any Spirion Agent
engaged in a search for the custom data type.

Creating a DLL

Spirion has created a sample project that should be used as the template for any

custom data types created using the Search API. It is available for download within
the Search API Knowledge Base article. Unpack it and open SearchDLL.vcxproj in an

IDE, such as Visual Studio 2019 documented in this walkthrough.

NOTE: The line(s) specified throughout this section references the SearchDLL file in
its original state (i.e. prior to adding any new code specified below).

1. In the project tree, navigate to SearchDLL.cpp.

2. From the Solution Configurations pulldown menu, toggle from “Debug” to

“Release.”

3. On line 19, specify a CUSTOM_SEARCH_NAME.

4. On line 20, specify a RESULT_TYPE.

a. The default value of “12001” may be used once, but all subsequent DLLs
must feature a unique value.

5. On line 63, specify a regular expression per the guidance in the comments.
a. NOTE: As emphasized in the project’s comments, backslashes must be

escaped.

https://support.spirion.com/hc/en-us/articles/4411640475277-Search-API

5

 ©2023 SPIRION, LLC. ALL RIGHTS RESERVED

b. For UIDAIs, enter the following baseline regex:

(^|\\s)[2-9]\\d{3}((-|\\s)*\\d{4}){2}(\\s|$)

6. On line 92, specify any keywords that should be used to validate a match.
a. For example, consider the following keywords in a regular expression:

aadhar|uidai|adhar|adhaar|aadhaar

7. Change dataType on line 99 to equal “1” so the above regex is used for
keyword validation.

8. Replace lines 160 through 166 with the following code:

 //UIDAI LOGIC

 // multiplication table

 static int d[][10] = {

 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},

 {1, 2, 3, 4, 0, 6, 7, 8, 9, 5},

 {2, 3, 4, 0, 1, 7, 8, 9, 5, 6},

 {3, 4, 0, 1, 2, 8, 9, 5, 6, 7},

 {4, 0, 1, 2, 3, 9, 5, 6, 7, 8},

 {5, 9, 8, 7, 6, 0, 4, 3, 2, 1},

 {6, 5, 9, 8, 7, 1, 0, 4, 3, 2},

 {7, 6, 5, 9, 8, 2, 1, 0, 4, 3},

 {8, 7, 6, 5, 9, 3, 2, 1, 0, 4},

 {9, 8, 7, 6, 5, 4, 3, 2, 1, 0}

 };

 // permutation table

 static int p[][10] = {

 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},

 {1, 5, 7, 6, 2, 8, 3, 0, 9, 4},

 {5, 8, 0, 3, 7, 9, 6, 1, 4, 2},

 {8, 9, 1, 6, 0, 4, 3, 5, 2, 7},

 {9, 4, 5, 3, 1, 2, 6, 8, 7, 0},

6

 ©2023 SPIRION, LLC. ALL RIGHTS RESERVED

 {4, 2, 8, 6, 5, 7, 3, 9, 0, 1},

 {2, 7, 9, 3, 8, 0, 6, 4, 1, 5},

 {7, 0, 4, 6, 9, 1, 3, 2, 5, 8}

 };

 // inverse table

 static int inv[] = { 0, 4, 3, 2, 1, 5, 6, 7, 8, 9 };

 int len = answer.size();

 int n = len - 1;

 int sumScope = len - 2;

 const int chkDigit = answer[n] - _T('0');

 int c = 0;

 for (int i = 0; i < (len / 2); i++) {

 swap(answer[i], answer[n]);

 n = n - 1;

 }

 for (int i = 1; i < len; i++) {

 c = d[c][p[((i) % 8)][answer[i] - _T('0')]];

 }

 if (inv[c] != chkDigit) { return(false); }

9. Repeat the previous step on lines 212 through 218.

10. Save changes to “SearchDLL.cpp.”

11. Navigate to Build in the main menu and select Build SearchDLL.

7

 ©2023 SPIRION, LLC. ALL RIGHTS RESERVED

12. Note the export path indicated in the IDE’s compilation logs to find where the
newly built DLL file resides.

13. Rename this file to “SearchUIDAI.dll”.

a. For ongoing maintenance of this custom data type, consider renaming

the “SearchDLL” project to “SearchUIDAI” for clarity.

Configuring the Spirion Console

Adding the DLL

Once built, the DLL now needs to be added to the SDM Console..

1. Log into SDM.

2. Navigate to the Admin tab and select Sensitive Data Types from the menu

on the left.

3. Click Add from the ribbon menu.

4. From the Data Type pulldown, select “Search API.”

5. Click the … button next to File.

6. Browse to the DLL(s) generated for this exercise in the previous section and
click Open.

7. Select Ok to finalize the entry.

8

 ©2023 SPIRION, LLC. ALL RIGHTS RESERVED

8. The custom data type associated with the DLL file will now appear as a
“Search API” entry with its associated “Type Number” and “Name” as

specified in the previous section.

Setting the SDM Scan Policy

The Search API should be enabled via “Scheduled Task” policy (as opposed to a
“System” policy).

1. Navigate to the Policies tab.

2. Modify or create a Scheduled Task policy that will be sent to the Spirion

Agent(s) for discovery scans using the Search API custom data type(s).
3. Under Settings expand Initialization > Plugins and set Enable to “Enable

Plugins.”

4. Initialization > Plugins > Path can be left blank (its default setting) unless the
Spirion Agent is installed to a nonstandard location.

5. Under Sensitive Data Types within the same policy, select UIDAI.

6. The Agent(s) assigned to this policy must be configured per the guidance in
the following section before being used in a search.

9

 ©2023 SPIRION, LLC. ALL RIGHTS RESERVED

Staging the Spirion Agent

The DLL file needs to be hosted locally within the Spirion Agent’s install directory for

Search API data types to be returned in scans initiated by either the Console or

Agent UI.

1. Using Windows File Explorer, navigate to the installation path of the Spirion
Agent.

a. This is C:\Program Files (x86)\Spirion by default.

2. Create a folder called “Plugins” and place the DLL file(s) in that new directory.

10

 ©2023 SPIRION, LLC. ALL RIGHTS RESERVED

Outcomes
With the custom DLL added to both the SDM Console and the Spirion Agent, scans

configured to use the Search API will include matches for UIDAI numbers that are

validated programmatically.

SDM Console Searches

Search API entries in the SDM Console are included in scan results so long as

“Initialization > Plugins > Enable” is set to “Enable Plugins” in an actively engaged
policy – selection via the policy’s “Sensitive Data Types” menu is used for tracking
purposes only.

Restricting Results

Individual Search API data types can be selectively included in a discovery scan by
editing the Scheduled Task policy to include the following adjustments:

1. Navigate to the Settings of a Scheduled Task configured to enable the Search
API.

2. Under Console, edit matchTypesCustom to include the “Type Number” of

the custom data type that should be included.

3. All other Search API entries will be omitted from scan results.

	Algorithmic Validation of UIDAI/Aadhaar Numbers with Spirion’s Search API
	Introduction
	Requirements
	Important Notes
	Spirion Software Versions
	Verhoeff Algorithm
	Example

	Process
	Creating a DLL

	Configuring the Spirion Console
	Adding the DLL
	Setting the SDM Scan Policy

	Staging the Spirion Agent

	Outcomes
	SDM Console Searches
	Restricting Results

